Hasse Invariants for the Clausen Elliptic Curves

نویسندگان

  • AHMAD EL-GUINDY
  • KEN ONO
چکیده

Gauss’s 2F1 ( 1 2 1 2 1 | x ) hypergeometric function gives periods of elliptic curves in Legendre normal form. Certain truncations of this hypergeometric function give the Hasse invariants for these curves. Here we study another form, which we call the Clausen form, and we prove that certain truncations of 3F2 ( 1 2 1 2 1 2 1 1 | x ) and 2F1 ( 1 4 3 4 1 | x ) in Fp[x] are related to the characteristic p Hasse invariants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connections and Related Integral Structures on the Universal Extension of an Elliptic Curve

§0. Introduction §1. The Étale Integral Structure on the Universal Extension §2. The Étale Integral Structure for an Ordinary Elliptic Curve §2.1. Some p-adic Function Theory §2.2. The Verschiebung Morphism §3. Compactified Hodge Torsors §4. The Étale Integral Structure on the Hodge Torsors §4.1. Notation and Set-Up §4.2. Degenerating Elliptic Curves §4.3. Ordinary Elliptic Curves §4.4. The Gen...

متن کامل

Local diophantine properties of modular curves of D-elliptic sheaves

We study the existence of rational points on modular curves of D-elliptic sheaves over local fields and the structure of special fibres of these curves. We discuss some applications which include finding presentations for arithmetic groups arising from quaternion algebras, finding the equations of modular curves of D-elliptic sheaves, and constructing curves violating the Hasse principle.

متن کامل

Curves over Global Fields Violating the Hasse Principle

We exhibit for each global field k an algebraic curve over k which violates the Hasse Principle. We can find such examples among Atkin-Lehner twists of certain elliptic modular curves and Drinfeld modular curves. Our main tool is a refinement of the “Twist Anti-Hasse Principle” (TAHP). We then use TAHP to construct further Hasse Principle violations, e.g. among curves over any number field of a...

متن کامل

A Modularity Test for Elliptic Mirror Symmetry

In this note a prediction of an algebraic mirror construction is checked for elliptic curves of Brieskorn-Pham type via number theoretic methods. It is shown that the modular forms associated to the Hasse-Weil L-series of mirror pairs of such curves are identical. PACS Numbers and

متن کامل

Elliptic curves with a given number of points over finite fields

Given an elliptic curve E and a positive integer N , we consider the problem of counting the number of primes p for which the reduction of E modulo p possesses exactly N points over Fp. On average (over a family of elliptic curves), we show bounds that are significantly better than what is trivially obtained by the Hasse bound. Under some additional hypotheses, including a conjecture concerning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011